groupUrl: https://ez.analog.com/switches_multiplexers/
Analog.com Analog Dialogue Wiki English
Analog.com Analog Dialogue Wiki 简体中文
EngineerZone
EngineerZone
  • Site
  • User
  • Site
  • Search
  • User
EngineerZone
EngineerZone
  • Log in
  • Site
  • Search
  • Log in
  • Home
  • Blogs ⌵
  • Browse ⌵
    • All Groups
    • All Members
  • Support ⌵
    • 3D ToF Depth Sensing
    • A2B
    • Aerospace and Defense (ADEF)
    • Amplifiers
    • Analog Microcontrollers
    • Analysis Control Evaluation (ACE) Software
    • Audio
    • Clock and Timing
    • Condition-Based Monitoring
    • Data Converters
    • Design Tools and Calculators
    • Direct Digital Synthesis (DDS)
    • Embedded Vision Sensing
    • Energy Monitoring and Metering
    • FPGA Reference Designs
    • Industrial Ethernet
    • Interface and Isolation
    • Low Power RF Transceivers
    • MEMS Inertial Sensors
    • Motor Control Hardware Platforms
    • Optical Sensing
    • Power Management
    • Precision Technology Signal Chains
    • Processors and DSP
    • Reference Circuits
    • RF and Microwave
    • Signal Chain Power (SCP)
    • Switches/Multiplexers
    • Temperature Sensors
    • Video
    • Wide Band RF Transceivers
    • Wireless Sensor Networks Reference Library
  • About EZ
  • More
  • Cancel
  • 主页
  • 浏览 ⌵
    • 收件箱
    • 个人设置
    • 会员
    • 专区列表
  • 论坛专区 ⌵
    • 放大器专区
    • 精密转换器专区
    • 音频专区
    • ADE电能计量专区
    • MEMS和传感器专区
    • 接口和隔离专区
    • Power 中文专区
    • ADUC微处理器专区
    • 锁相环专区
    • 开关和多路复用器专区
    • 温度传感器
    • 基准电压源专区
    • 资源库
    • 论坛使用指南
    • 技术支持参考库
    • 在线研讨会
    • 论坛社群活动
    • 论坛激励活动
  • More
  • Cancel
Switches/Multiplexers
Switches/Multiplexers
Documents FAQ: ADG5401F
  • Q&A
  • Documents
  • Tags
  • Managers
  • More
  • Cancel
  • New
Switches/Multiplexers requires membership for participation - click to join
  • +Documents
  • 1. Thermal Resistance Junction to Board (Theta JB): 2. Thermal Resistance Junction to Case (Theta JC):
  • 3.3V VL logic supply for ADG2128
  • AD8152 EVB
  • AD8152: Connection of DC inputs
  • AD8152: used as a DVI switch
  • AD8152_switch HDMI signals
  • AD8156: Can I drive AD8156 from LVDS and LVCMOS sources?
  • AD8156: multiplexer and OOB feature
  • AD8159: Layout
  • ADG1204: Connecting the exposed paddle to Vss
  • ADG1204: Optimal impedance level
  • ADG1204: What is the optimal impedance level for source and load to apply?
  • ADG1219: Spice modell to simulate the charge injection?
  • ADG1219: Supply voltage
  • ADG1236: Charge injection
  • ADG1409: ADG1409: Process technology / MTBF
  • ADG1434: IBIS model
  • ADG1436_leakage current
  • ADG1604 DC "Off resistance"
  • ADG1612: Minimum supply voltage
  • ADG2128 Output stage ( Hi, Lo, Hi Z) of the I/O when the switch is off
  • ADG3123: Maximum Output Signal Swing
  • ADG3247:  Hotswapping
  • ADG3248: number of logic gates transistors used
  • ADG324x: Level Translation of ADG324x Bus Switches
  • ADG324x: Maximum Pass Voltage of the ADG324x Bus Switches
  • ADG3300/01/04: Input Driving and Output Load Requirements
  • ADG3300: Can I work with VCCA = VCCY?
  • ADG3304: Is this device compatible with I2C?
  • ADG3304: used as I2C level shifter
  • ADG3304_power up sequence
  • ADG3304_protection method
  • ADG3308 and indeterminate i/p o/p state's interface  query
  • ADG3308 bidirectional, setting the direction
  • ADG3308: Design queries
  • ADG3308: Input Driving and Output Load Requirements
  • ADG330x unused inputs
  • ADG330x: devices is heating up - what is the reason
  • ADG330x: Level Translator for I2C Applications
  • ADG330x: Source and Sink Currents
  • ADG333A switching frequency / bandwidth information?
  • ADG333A_Status_WhenInputFloat
  • ADG406: Unpowered usage
  • ADG409: Minimum power supply
  • ADG411: is ist possible to worf with a 3V Logic Level?
  • ADG411: logic threshold voltage over digital supply.
  • ADG412: Lower voltage supplies than specified
  • ADG419: supply voltage
  • ADG426_leakage data at 60C
  • ADG428:  Descrepancy between maximum operating temperature in selection tool and web page order guide
  • ADG438F: Bidirectional or unidirectional
  • ADG442: low logic level clamped to about -1V.
  • ADG451: Latch up
  • ADG451BR: Spectral Noise Density
  • ADG452: GND connections
  • ADG452: VL = 15V possible not not recommendable
  • ADG453: Perfomance from +/- 15 V power supply
  • ADG453: Power Up Sequence
  • ADG467: Fault free input range
  • ADG506: Overvoltage on the input
  • ADG506: Pin connection
  • ADG508 ADG509_digital control voltage range
  • ADG508A: Enquiry for product specification
  • ADG508AKN: Robustness
  • ADG508_thetaJC and maximumTJ
  • ADG5208: THD specifications missing at the ADG520x family
  • ADG5404, ADG1406, ADG442: case temperature:
  • ADG5436_unbalance power supply
  • ADG54xx Latch-up immune switches and multiplexers FAQ
  • ADG601: Digital input from a FET
  • ADG621_spec for 3.3v supply
  • ADG623: ESD Lavel for the AGD623
  • ADG659: Supply voltage
  • ADG701: Noise
  • ADG706: +/- 5V supplies
  • ADG706: Grounding
  • ADG706: Working as a demultiplexer
  • ADG708: Multiplexing 3V3 logic signals
  • ADG709: Life time
  • ADG712: overvoltage protection
  • ADG715 Operation with VDD=VSS=0V
  • ADG728: Input and output current for safe operation
  • ADG732 LFCSP exposed Pad
  • ADG733: Noise specification
  • ADG734 in audio application
  • ADG734: Usage without supplies
  • ADG788: ESD rating
  • ADG788: How much ESD can the ADG788 take?
  • ADG801_parallel multiple switch to reduce Ron
  • ADG804: Maximum voltage
  • ADG819BRM's branding is "SBC" although in the datasheet states "SNB".
  • ADG819_switching current
  • ADG884 Overvoltage
  • ADG884: Bandwidth simulation
  • ADG901: Max current
  • ADG936_About the insertion loss between DC to 50MHz
  • ADGS1412 FAQ
  • ADN4600 Design Support Files
  • ADN4604 Design Support Files
  • ADN4605 Design Support Files
  • ADN4612 Design Support Files
  • ADV3200_3201 Design Support Files
  • ADV3202_3203 Design Support Files
  • ADV3224_3225 Design Support Files
  • ADV3226_ADV3227 Design Support Files
  • ADV3228_3229 Design Support Files
  • Are Latch-up immune parts over-voltage fault protected?
  • Are these parts pin-pin compatible with existing parts?
  • Can I leave the exposed pad floating?
  • Can other channels really continue to operate as normal when another channel is in fault?
  • Can the ADG333 be powered from a single 24V supply?
  • Can the ADG452 be powered from a single 24V supply and 3.3V digital supply?
  • Can you explain Power-Off protection and its benefits?
  • Charge Injection
  • confusing redundant temperature spec info in datasheet
  • Cross talk when using ADG490 to mux thermocoules
  • Datasheet for SW01,SW02,SW03,SW04
  • Do you specify switch Off Resistance?
  • EVAL-ADG2128EBZ: What type of cable can I use to connect the board to my signal generator?
  • FAQ: ADG52xxF
  • FAQ: ADG5401F
  • FAQ: ADG54xx
  • FAQ: ADG54xxF
  • FAQ: Digital Crosspoint Switch Frequently Asked Questions
  • FIT reliablity data
  • General Switch/Mux FAQ
  • How do CMOS switch logic control voltage levels affect Idd?
  • How do the fault diagnostics work?
  • How should I manage unused or Not Connected pins?
  • I like the robustness of these parts to PSS issues and the good ESD performance but my application needs lower capacitance and good leakage performance.
  • Is it okay to connect the ADG1611BRUZ's and ADG1436YCPZ's Exposed Pad to Gnd?
  • Latch-up and how are these parts immune to it?
  • MAX14763ETA+ alternative
  • Maximum Pass Voltage on the ADG324x bus switches
  • MEMS Switch Technology FAQ's
  • Multiplexer Settling Time
  • Multiplexor and switch noise specifications
  • Power Supply sequencing requirements for ADG451, ADG452, ADG453
  • Radiation hardened/Space qualified parts
  • Replacement for ADG201ATQ
  • SPICE model not working with Altium Designer
  • Stencil opening for AD8158ACPZ
  • SW06: State of the switch when unpowered
  • Switch & Multiplexer Leakage Measurement Reduction Tutorial
  • Switches and Multiplexers Break-Before-Make Timing Considerations
  • Switches and Multiplexes Support Community
  • The ADG5248F offers �55V over-voltage protection.  What are the keys things I need to      understand about this Over-voltage protected switch compared to using a standard switch in      my application
  • These parts are good, but I need lower on resistance at �15V. Do you have any compatible parts?
  • Theta JA(Junction to Ambient Temperature) and Theta JC (Junction to case Temperature)
  • What are suitable applications for these parts?
  • What are the key benefits of these fault protected switches?
  • What are the system benefits of fault diagnostics?
  • What are the system benefits of overvoltage fault protection with secondary supplies?
  • What happens to the output during an over-voltage event?
  • What if I need to protect my device or downstream circuits against over-voltages?
  • What is the ESD rating of these devices and what is the benefit of the rating?
  • What is the minimum voltage that can be used with these parts?
  • What is the recommended supply sequence?
  • What is the role of the Control Echo Enable bit?
  • What will be the recovery time when switching from a channel in fault to a channel not in      fault?

FAQ: ADG5401F

Q1: What is the maximum voltage that the ADG5401F can withstand?

A1: The ADG5401F can withstand voltages up to ±60V on the S and SFB inputs.

Q2: At what threshold will the part detect an Over Voltage signal?

A2 The ADG5401F will detect any voltage > VDD +0.7V or < VSS -0.7V as a Fault and implement the Over Voltage Protection mechanism.

Q3: Is the Over Voltage threshold programmable?

A3: The Over Voltage threshold limit is determined by the supply voltage level. The supply Voltage range is Dual supply range of  ± 5V to ±22V or Single Supply range of +8V to +44V. The selected supply value will set the trip threshold for the Over Voltage Protection mechanism to kick in.

Q4: What is the purpose of the secondary feedback channel?

A4: When the ADG5401F is used to protect an amplifier or DAC output the secondary feedback channel is used to close the feedback loop outside of the main switch channel.

Q5: What is the purpose of the internal open loop prevention switch?

A5: When protecting an amplifier output the open loop prevention switch keeps the amplifier output stable by keeping the feedback channel loop in tact when the switch channels are open.

Q6 How do I connect the feedback channel if it is not required?

A6: It is recommended to connect the feedback channel to the main channel even if it is not required. (S->SFB, D->DFB).

Q7: What is the internal Power Condition switch?

A7: The power on condition switch feature is a user configurable switch that pulls the source (S) pin of the switch to ground through a 30kOHm resister when the switch is disabled and no fault is present.

Q8: How quickly will the switch open when a fault occurs?

A8: The datasheet specifies Over Voltage Response Time. There are 2 times specified – tRESPONSE for Positive Fault and tRESPONSE for Negative Fault. These values specify the time from fault detection to when the switch opens.

Q9: Is there any current shunted to the supplies in an Over Voltage scenario?

A9: No, There is no path from the S and SFB pins to the supplies that would shunt current to the supplies during an Over Voltage Fault event. The switch is open during this over voltage and therefore prevents any current flowing through the switch path. The ADG5401F datasheet specifies the Leakage current during an over voltage event and there is a slight increase in the leakage current

Q10: Is the switch guaranteed open when VDD and VSS are not on?

A10: Yes the switch is guaranteed open when VDD and VSS are not applied to the ADG5401F.

Q11:Does the FF pin reset when the fault condition disappears?

A11: The FF pin will reset once the Fault condition is removed. The user does not need to reset the FF flag. The ADG5401F Datasheet specifies Over Voltage Recovery Time tRECOVERY  and Interrupt Flag Recovery time tDIGREC these times indicate the time taken by the ADG5401F to recover once the fault is removed and the time for the Fault Flag to reset once the fault is removed respectively.

Q12: Can the Digital signals be applied to the ADG5401F when VDD and VSS are not on?

A12: The Digital Inputs have an absolute maximum rating from GND-0.7V to 6V and is independent of VDD and VSS supplies. Therefore the part can tolerate the digital inputs being applied prior to the supplies being applied to the ADG5401F. However as with any absolute maximum rating the part should not be left in this condition for long periods of time.

Q13: What is the Over current limit on the ADG5401F?

A13: The max continuous current at 25 °C the ADG5401F can pass is 163mA. There is no overcurrent protection on the ADG5401F.

Q14: What is the difference between the ADG5401 and the new ADG5401F devices?

A14: The ADG5401F has +/-60 V Fault protection, Over voltage detection mechanism, Feedback channel for open loop prevention, Fault Flag to indicate when an over voltage condition occurred. Both the ADG5401 and ADG5401F are latch up immune. The ADG5401F has lower logic threshold levels and therefore can work with lower supply voltage digital hosts.

  • Share
  • History
  • More
  • Cancel
Comments
Anonymous
Related
 
社交网络
快速链接
  • 关于ADI
  • Partners
  • 模拟对话
  • 职业
  • 联系我们
  • 投资信息
  • 新闻中心
  • 质量和可靠性
  • 办事处与代理商
  • Analog Garage
语言
  • English
  • 简体中文
  • 日本語
  • Руccкий
电子快讯

欲获得最新ADI产品、设计工具、培训与活动的相关新闻与文章,请从我们的在线快讯中选出您感兴趣的产品类别,每月或每季度都会发送至您的收件箱。

订阅
Switch to mobile view
Analog Logo
© 1995 - 2022 Analog Devices, Inc. All Rights Reserved 沪ICP备09046653号-1
  • ©
  • 1995 - 2022 Analog Devices, Inc. All Rights Reserved
  • 沪ICP备09046653号-1
  • 网站地图
  • 隐私和保密政策
  • 隐私设置
  • 使用条款
 
Social
Quick Links
  • About ADI
  • Partners
  • Analog Dialogue
  • Careers
  • Contact us
  • Investor Relations
  • News Room
  • Quality & Reliability
  • Sales & Distribution
  • Analog Garage
Languages
  • English
  • 简体中文
  • 日本語
  • Руccкий
Newsletters

Interested in the latest news and articles about ADI products, design tools, training and events? Choose from one of our 12 newsletters that match your product area of interest, delivered monthly or quarterly to your inbox.

Sign Up
Switch to mobile view
Analog Logo
© 1995 - 2022 Analog Devices, Inc. All Rights Reserved 沪ICP备09046653号-1
  • ©
  • 1995 - 2022 Analog Devices, Inc. All Rights Reserved
  • 沪ICP备09046653号-1
  • Sitemap
  • Privacy & Security
  • Privacy Settings
  • Terms of use
EngineerZone Uses cookies to ensure you get the best experience in our community. For more information on cookies, please read our Privacy & Security Statement.