• TAGS LISTS: Voltage References

    LT1460
    LTC1258
    LT1021
    LT1027
    LTC1798
    RH1021-10
    RH1021-5
    RH1021-7
    LT6660
    LH0070
    LTC6655
    AD2700
    AD2702
    AD584S
    REF01S
    REF05S
    REF10S
    REF43S
    REF02S
    AD1582
    AD1583
    AD1584
    AD1585
    LT1019
    LT1236
    LTC6652
    REF02…
  • AD7193 Supply Voltage & Reference

    SCHEMATIC1 _ PAGE1.pdf

    Hello,

    Please find attached figure.

    I have used REFIN2 by setting REFSEL=1.

    As shown in fig. 3.3V supply is connected to AVDD & REFIN1 is tied to AVDD. Fig. shows Inductor L is connected in series. Instead of L if I Connect Resistor…

  • [高精度数据采集][AD7799][电子称称重]

    AD7799称重系统
      

       AD7799的方案定型,到PCB样板的打样就只有几天的时间,可以说很顺利。简单的说一下模拟部分的电路:传感器信号经简单的一阶RC低通滤波直接接到AD7799AIN1+AIN1-AD7799DOUTSCLKDINCSADuM1401跟单片机相连,单片机本身带有SPI口,但本人觉得设置SPI积存器比较麻烦,就采用模拟SPIAD7799进行通讯;系统采用2个电源模块分别对模拟电路和数字电路进行供电,粗略的算了一下模拟电路部分的功耗,采用LM2931对模拟部分供电…

  • 工业应用Sigma-Delta ADC常见问题解答

    问题:峰峰值噪声与有效噪声的区别,峰峰值分辨率与有效分辨率的区别?无失码分辨率又是指的什么?

    答案:无失码分辨率是对ADC线性性能的评价指标。峰峰值分辨率和有效值分辨率是评价ADC噪声性能的重要指标。它们之间的关系是

    峰峰值分辨率=有效分辨率-2.7 bits

    这个关系的理论基础是,噪声通常是随机的,并且它的分布是正态分布。那么

    Vnoise (peak-to-peak) = Vnoise (rms) x 6.6;99.9%的出现概率

    如果转换为分辨率,就是2.7位的差别。(log26…

  • Sigma -Delta ADC常见问题解答

    ADI 拥有一系列种类齐全的高分辨率低带宽的Sigma-Delta ADC 产品,这些产品不仅集成了ADC,还集成了电流源、多路开关、可编程增益放大器PGA,模拟输入缓冲等等。

    附件中是 Sigma -Delta ADC常见问题解答 ,欢迎小伙伴们下载~~

  • RE: internal temp sensor ad7794

    Hello Mircea,

    attached are FAQs for the AD7794 device. These may be useful to you. On page 7, there is additional information on the temperature sensor. To calibrate the temp sensor, the conversion generated by the ADC at a known temperature is recorded…

  • RE: Offset/full scale register

    Hi,

    The offset register is set to 800000 hex by default. The full scale error at a gain of 1 is calibrated in the factory so this register will contain some default value also (5XXXXX hex).

    Further calibrations can be performed. So, as part of the…

  • ADI芯片辨识、型号查找

    看看截图: