Analog.com Analog Dialogue Wiki English 简体中文
EngineerZone
EngineerZone
  • Log In
  • Site
  • Search
  • User
  • Support

    Popular Forums

    • RF and Microwave
    • Power Management
    • Video
    • FPGA Reference Designs
    • Precision ADCs
    • Linux Software Drivers
    • SigmaDSP Processors & SigmaStudio Dev. Tool

    Product Forums

    • A2B
    • Amplifiers
    • Analog Microcontrollers
    • Clock and Timing
    • Data Converters
    • Direct Digital Synthesis (DDS)
    • Energy Monitoring and Metering
    • Interface and Isolation
    • MEMS Inertial Sensors
    • Processors and DSP
    • Switches/Multiplexers
    • Temperature Sensors
    • Voltage References
    View All

    Application Forums

    • Audio
    • Automated Test Equipment (ATE)
    • Condition-Based Monitoring
    • Depth, Perception & Ranging Technologies
    • Embedded Vision Sensing Library
    • Motor Control Hardware Platforms
    • Optical Sensing
    • Precision Technology Signal Chains Library
    • Video
    • Wireless Sensor Networks Reference Library

    Design Center Forums

    • ACE Evaluation Software
    • ADEF System Platforms
    • Design Tools and Calculators
    • FPGA Reference Designs
    • Linux Software Drivers
    • Microcontroller no-OS Drivers
    • Reference Designs
    • Signal Chain Power (SCP)
    • Software Interface Tools
    • System Demonstration Platform (SDP) Support
  • Learn

    Highlighted Webinar

    Multidimensional Simulations of Beamformers and other RF Integrated Circuits in Keysight SystemVue

    Recent Discussions

    • ADALM-PLUTO maximum frequency
    • Issue running built programs on Pluto
    • Activity: Simple Op Amps, For ADALM1000 Fig. 1.3 Buffering example
    • ADALM-PLUTO [NETWORK] vs [USB_ETHERNET]
    • Using buffer size different from 2**n

    Places

    • ADI Education Home
    • ADI Education China
    • ADI Education India
    • ADI Education Philippines
    • StudentZone (Analog Dialogue)
    • Virtual Classroom

    Latest Webinars

    • Multidimensional Simulations of Beamformers and other RF Integrated Circuits in Keysight SystemVue
    • Improve Smart Building Energy Efficiency with Industrial Ethernet Controlled Air Conditioning (HVAC) Systems
    • Sustainable Motion Control Solutions for High Performance Servo Drives
    • Audio Design Solutions for Augmented and Virtual Reality (AR/VR) Glasses
    • Robust Industrial Motor Encoder Signal Chain Solutions
    View All Webinars
  • Community Hub

    Challenge Yourself!

      KCC's Quizzes: AQQ 236 about strange marking on airplane engines
    View All

    Places

    • Community Help
    • Logic Lounge

    Resources

    • EZ Code of Conduct
    • Getting Started Guide
    • ADI: Words Matter
    • Community Help Videos
    View All
  • Blogs

    Highlighted Blogs

    Can LTspice Break Physics?

     

    Crawl, Walk, And Run - The Journey To Create The Phaser

    Latest Blogs

    • Hardware Holds The Key To Making Industrial Systems IEC 62443 Compliant
    • Behind the Scenes of DIYRadio Blogs: An Introduction
    • Empowering Surveillance Cameras To Capture A Scene Without Being Heard
    • Mastering The Metrics Makes Specifying Encoders Simpler
    • Understanding Secret Key Cryptography Without Formulas
    Read All Blogs

    ADI Blogs

    • EZ Spotlight
    • The Engineering Mind
  • Partners

    Electronic Design Services - PartnerZone

    • Boston Engineering
    • Calian, Advanced Technologies
    • Colorado Engineering Inc. (DBA CAES AT&E)
    • Clockworks Signal Processing
    • Epiq Solutions
    • Fidus
    • PalmSens
    • Richardson RFPD
    • Tri-Star Design, Inc.
    • VadaTech
    • Vanteon
    • X-Microwave
    View All
RF and Microwave
RF and Microwave
Documents RF Detector Flatness vs. Frequency
  • Blogs
  • Forums
  • File Uploads
  • FAQs/ Docs
  • Members
  • Tags
  • More
  • Cancel
  • +Documents
  • +RF Switches & Attenuators: FAQ
  • +1/f noise of the ADL5387: FAQ
  • +1/f phase noise: FAQ
  • +AD608: FAQ
  • +AD8302: FAQ
  • +AD8309: FAQ
  • -AD8318: FAQ
    • AD8318 Temperature sensor output characteristic
    • FAQ: ADL5902 RMS Detector: Operation at Frequencies greater than 5.8 GHz
    • FAQ: Calculating the Resistor Values to Alter the Slope of a RF Log Amp or RMS Detector
    • FAQ: Long Term Drift of RF Detectors
    • Pulse Response of Linear-in-dB RMS Detectors with no RMS Averaging Capacitor Present
    • RF Detector Flatness vs. Frequency
    • Switching an RF Detector between Measurement Mode and Controller Mode
  • +AD831: FAQ
  • +AD8340: FAQ
  • +AD8345: FAQ
  • +AD8347: FAQ
  • +AD8348 and ADL5387: FAQ
  • +AD8361: FAQ
  • +AD8362: FAQ
  • +AD8363: FAQ
  • +AD8364: FAQ
  • +AD8366: FAQ
  • +AD8368: FAQ
  • +AD8370: FAQ
  • +AD8375: FAQ
  • +AD9854 DDS: FAQ
  • +ADF4001: FAQ
  • +ADF4107: FAQ
  • +ADF4150: FAQ
  • +ADF4153: FAQ
  • +ADF4155: FAQ
  • +ADF4158: FAQ
  • +ADF4193: FAQ
  • +ADF41XX: FAQ
  • +ADF4350 and ADF4351: FAQ
  • +ADF4350: FAQ
  • +ADF4355-2: FAQ
  • +ADF4360-x: FAQ
  • +ADF5355: FAQ
  • +ADF7021-N: FAQ
  • +ADF9010: FAQ
  • +ADI's RF/IF gain blocks: FAQ
  • +ADIsimRF: FAQ
  • +ADL5240_ADL5243: FAQ
  • +ADL5330: FAQ
  • +ADL5336: FAQ
  • +ADL5370: FAQ
  • +ADL5373: FAQ
  • +ADL5375: FAQ
  • +ADL5380: FAQ
  • +ADL5385: FAQ
  • +ADL5390: FAQ
  • +ADL5511: FAQ
  • +ADL5535/6: FAQ
  • +ADL5601/2: FAQ
  • +ADL5602: FAQ
  • +ADL5801: FAQ
  • +ADL5802: FAQ
  • +ADL5902: FAQ
  • +ADRF6520: FAQ
  • +Auxiliary DACs: FAQ
  • +Calculating VSWR: FAQ
  • +CyUSB PLL: FAQ
  • +DAC/IQ Modulator Combination: FAQ
  • +dc bias level: FAQ
  • +Decoupling(Bypass) and AC-Coupling Capacitors: FAQ
  • +Footprint for ADI components: FAQ
  • +Fractional-N PLLs: FAQ
  • +Gerber files: FAQ
  • +High Voltage VCOs: FAQ
  • +Hittite Microwave RF/MW Amplifiers: FAQ
  • +Hittite PLL+VCO: FAQ
  • +Hittite PLLVCO: FAQ
  • +HMC Microwave Frequency Dividers: FAQ
  • +HMC Phase Frequency Detectors: FAQ
  • +HMC PLL's & PLLVCO: FAQ
  • +HMC-ABH241: FAQ
  • +HMC1020: FAQ
  • +HMC292A: FAQ
  • +HMC406MS8G: FAQ
  • +HMC451: FAQ
  • +HMC557A: FAQ
  • +HMC558A: FAQ
  • +HMC587LC4B: FAQ
  • +HMC589: FAQ
  • +HMC611LP4: FAQ
  • +HMC624ALP4E: FAQ
  • +HMC634LC4: FAQ
  • +HMC685LP4: FAQ
  • +HMC686LP4/686LP4E: FAQ
  • +HMC773ALC3B: FAQ
  • +HMC778LP6CE: FAQ
  • +HMC807LP6CE: FAQ
  • +HMC832LP6GE vs HMC830LP6GE: FAQ
  • +HMC909: FAQ
  • +Int-N PLL evaluation boards: FAQ
  • +IQ demodulator: FAQ
  • +IQ Modulators: FAQ
  • +LTC694x: FAQ
  • +OP-AMP: FAQ
  • +PLL USB adapter board: FAQ
  • +RF & Microwave: FAQ
  • +RF Connectors: FAQ
  • +RF Detector Overdrive: FAQ
  • +rms detector: FAQ
  • +S-Parameters: FAQ
  • +Standard S-Parameter Files: FAQ

RF Detector Flatness vs. Frequency

Question: How can I figure out the output flatness vs. frequency of an RF Detector such as the AD8363

Answer:

Using the Slope and Intercept specs it is possible to get a sense for and RF Detector's  flatness vs frequency. Let’s take the example of the AD8363. Let’s consider the easy-to-calculate case where the input power is equal to 0 dBm. The general equation for the output voltage of a linear-in-dB RF Detector is:

Vout = Slope x (Pin – Intercept)

 

So for Pin = 0 dBm,  this reduces to

Vout = - Slope x Intercept

Using the published slope and intercept specs of AD8363, we get

100 MHz   Vout  = 2.99 V

900 MHz Vout = 3.0044 V

1.9 GHz Vout = 2.86 V

2.14 GHz Vout = 2.8188 V

2.6 GHz Vout  = 2.5921

 

Since the slope of the AD8363 is around 52 mV/dB, this corresponds to a variation vs frequency (over this freq range) of approximately 8 dB.

On a newer device ADL5511 whose output voltage is linear in V/V,  we have measured  the variation and found it to be  much smaller. In this case, we see that the device is quite flat up to around 4 GHz.  The trade off with this device (compared to AD8363 or AD8318) is that it has less range (47 dB). For more information on this, take a look at Figures 57 and 58 in the Rev. A Datasheet.

The plot below shows the relative errors of various RF Detectors vs. frequency after they have been calibrated at a single frequency.  Unsurprisingly, the ADL5511 that was referenced above has the flattest overall performance (this plot has the brown tick marks in the plot). This device also has another advantage in applications where RF power needs to be measured over a wide frequency range.  Many of ADI's RF Detectors have external temperature compensation nodes. These inputs allow for the temperature drift of the device (which can vary with frequeny) to be compensated. Since the drift can vary with frequency, the required compensation voltage will also vary. In the case of the ADL5511 RF Detector, no external temperature compensation is required.

  • ad8310
  • ad8309
  • ad8318
  • ad8319
  • ad8317
  • ad8362
  • flatness_vs_frequency
  • adl5513
  • adl5902
  • ad8364
  • ad8363
  • ad8313
  • ad8307
  • Share
  • History
  • More
  • Cancel
Related
Recommended
Social
Quick Links
  • About ADI
  • ADI Signals+
  • Analog Dialogue
  • Careers
  • Contact us
  • Investor Relations
  • News Room
  • Quality & Reliability
  • Sales & Distribution
  • Incubators
Languages
  • English
  • 简体中文
  • 日本語
Newsletter

Interested in the latest news and articles about ADI products, design tools, training and events? Subscribe today!

Sign Up
Analog Logo
©1995 - 2023 Analog Devices, Inc. All Rights Reserved
沪ICP备09046653号-1
  • Sitemap
  • Legal
  • Privacy & Security
  • Privacy Settings
EngineerZone Uses cookies to ensure you get the best experience in our community. For more information on cookies, please read our Privacy & Security Statement.