Analog.com Analog Dialogue Wiki 简体中文
EngineerZone
EngineerZone
  • Log In
  • Site
  • Search
  • User
  • Support

    Popular Forums

    • RF and Microwave
    • Power Management
    • Video
    • FPGA Reference Designs
    • Precision ADCs
    • Linux Software Drivers
    • SigmaDSP Processors & SigmaStudio Dev. Tool

    Product Forums

    • A2B
    • Amplifiers
    • Analog Microcontrollers
    • Clock and Timing
    • Data Converters
    • Direct Digital Synthesis (DDS)
    • Energy Monitoring and Metering
    • Interface and Isolation
    • MEMS Inertial Sensors
    • Processors and DSP
    • Switches/Multiplexers
    • Temperature Sensors
    • Voltage References
    View All

    Application Forums

    • Audio
    • Automated Test Equipment (ATE)
    • Condition-Based Monitoring
    • Depth, Perception & Ranging Technologies
    • Embedded Vision Sensing Library
    • Motor Control Hardware Platforms
    • Optical Sensing
    • Precision Technology Signal Chains Library
    • Video
    • Wireless Sensor Networks Reference Library

    Design Center Forums

    • ACE Evaluation Software
    • ADEF System Platforms
    • Design Tools and Calculators
    • FPGA Reference Designs
    • Linux Software Drivers
    • Microcontroller no-OS Drivers
    • Reference Designs
    • Signal Chain Power (SCP)
    • Software Interface Tools
    • System Demonstration Platform (SDP) Support
  • Learn

    Highlighted Webinar

    Multidimensional Simulations of Beamformers and other RF Integrated Circuits in Keysight SystemVue

    Recent Discussions

    • Issue running built programs on Pluto
    • Activity: Simple Op Amps, For ADALM1000 Fig. 1.3 Buffering example
    • ADALM-PLUTO [NETWORK] vs [USB_ETHERNET]
    • Using buffer size different from 2**n
    • ADALM1000 Pixelpulse feature Source Voltage / Measure Current explanation

    Places

    • ADI Education Home
    • ADI Education China
    • ADI Education India
    • ADI Education Philippines
    • StudentZone (Analog Dialogue)
    • Virtual Classroom

    Latest Webinars

    • Multidimensional Simulations of Beamformers and other RF Integrated Circuits in Keysight SystemVue
    • Improve Smart Building Energy Efficiency with Industrial Ethernet Controlled Air Conditioning (HVAC) Systems
    • Sustainable Motion Control Solutions for High Performance Servo Drives
    • Audio Design Solutions for Augmented and Virtual Reality (AR/VR) Glasses
    • Robust Industrial Motor Encoder Signal Chain Solutions
    View All Webinars
  • Community Hub

    Challenge Yourself!

      KCC's Quizzes: AQQ 236 about strange marking on airplane engines
    View All

    Places

    • Community Help
    • Logic Lounge

    Resources

    • EZ Code of Conduct
    • Getting Started Guide
    • ADI: Words Matter
    • Community Help Videos
    View All
  • Blogs

    Highlighted Blogs

    Crawl, Walk, And Run - The Journey To Create The Phaser

     

    Hardware Holds The Key To Making Industrial Systems IEC 62443 Compliant

    Latest Blogs

    • Behind the Scenes of DIYRadio Blogs: An Introduction
    • Empowering Surveillance Cameras To Capture A Scene Without Being Heard
    • Mastering The Metrics Makes Specifying Encoders Simpler
    • Understanding Secret Key Cryptography Without Formulas
    • 3 Reasons Why IO-Link is Changing Smart Factory Decision Making
    Read All Blogs

    ADI Blogs

    • EZ Spotlight
    • The Engineering Mind
  • Partners

    Electronic Design Services - PartnerZone

    • Boston Engineering
    • Calian, Advanced Technologies
    • Colorado Engineering Inc. (DBA CAES AT&E)
    • Clockworks Signal Processing
    • Epiq Solutions
    • Fidus
    • PalmSens
    • Richardson RFPD
    • Tri-Star Design, Inc.
    • VadaTech
    • Vanteon
    • X-Microwave
    View All
MEMS Inertial Sensors
MEMS Inertial Sensors
Documents FAQ: ADIS16228/PCB-ADISUSB Tutorial
  • Forums
  • Files
  • FAQs/ Docs
  • Members
  • Tags
  • More
  • Cancel
  • +Documents
  • +3-D Model/STEP: FAQ
  • +AD22282-A-R2: FAQ
  • +ADIS16000: FAQ
  • +ADIS16003 MTBF: FAQ
  • +ADIS16006: FAQ
  • +ADIS16201: FAQ
  • +ADIS16203: FAQ
  • +ADIS16204: FAQ
  • +ADIS16209: FAQ
  • +ADIS16210: FAQ
  • +ADIS16223: FAQ
  • +ADIS16227: FAQ
  • -ADIS16228: FAQ
    • FAQ: ADIS16228 Autonull in Vibration Evaluation Program
    • Any tips for performance optimization?
    • critical performance parameters
    • Do we offer a wireless interface for this device?
    • Shouldn't we have more expertise?
    • type of applications use the ADIS16228?
    • What evaluation tools are available?
    • What is special about the ADIS16228?
    • Why use frequency-domain analysis and spectral alarms?
    • ADIS16228 Datasheet Error: Figure 27
    • ADIS16228 Demonstration Project
    • FAQ: ADIS16228 Demonstration, Compressor Case
    • FAQ: ADIS16228 Evaluation Tool Overview
    • FAQ: ADIS16228 Evaluation Tutorial, Alarm Demonstration
    • FAQ: ADIS16228 Evaluation Tutorial, Automatic FFT
    • FAQ: ADIS16228 Evaluation Tutorial, Automatic Bias Correction
    • FAQ: ADIS16228 Evaluation Tutorial, Automatic FFT/Multi-Record
    • FAQ: ADIS16228 Evaluation Tutorial, FFT Header/Data Capture Demo
    • FAQ: ADIS16228 Evaluation Tutorial, Manual FFT
    • FAQ: ADIS16228 Evaluation Tutorial, Manual FFT/Multi-Record
    • FAQ: ADIS16228 Evaluation Tutorial, Register Access
    • FAQ: ADIS16228 Evaluation Tutorial, Sample Rate Control
    • FAQ: ADIS16228 FFT Header Example
    • FAQ: ADIS16228 Real-time support through Vibration Evaluation Program
    • FAQ: ADIS16228 Register Access in Evaluation Software
    • FAQ: ADIS16228/PCB-ADISUSB Tutorial
    • FAQ: ADIS16228/PCBZ Breakout Board Cables
    • FAQ: Vibration Analysis with the ADIS16228
    • FAQ: Where can I find information on evaluation tools for ADIS16xxx products? (OLD)
    • How do we communicate with the ADIS16228?
    • How does it compare to piezoelectric sensors (classic approach)?
    • How does it work?
  • +ADIS16229: FAQ
  • +ADIS16240: FAQ
  • +ADIS16255: FAQ
  • +ADIS16355: FAQ
  • +ADIS16364: FAQ
  • +ADIS16365: FAQ
  • +ADIS16375: FAQ
  • +ADIS16385: FAQ
  • +ADIS16400: FAQ
  • +ADIS16405: FAQ
  • +ADIS16407: FAQ
  • +ADIS16445: FAQ
  • +ADIS16448: FAQ
  • +ADIS16460: FAQ
  • +ADIS16475: FAQ
  • +ADIS16477: FAQ
  • +ADIS1647x: FAQ
  • +ADIS16480: FAQ
  • +ADISUSB: FAQ
  • +ADXL001: FAQ
  • +ADXL203: FAQ
  • +ADIS16300: FAQ
  • +ADIS16485: FAQ
  • +ADIS16488: FAQ
  • +ADIS16488A: FAQ
  • +ADIS16490: FAQ
  • +ADIS16495: FAQ
  • +ADIS16497: FAQ
  • +ADXL103: FAQ
  • +ADXL150: FAQ
  • +ADxL193: FAQ
  • +ADXL202: FAQ
  • +ADXL206: FAQ
  • +ADXL210: FAQ
  • +ADXL210E: FAQ
  • +ADXL213: FAQ
  • +ADxL230: FAQ
  • +ADXL278: FAQ
  • +ADXL312: FAQ
  • +ADXL313: FAQ
  • +ADXL320: FAQ
  • +ADXL321: FAQ
  • +ADXL322: FAQ
  • +ADXL327: FAQ
  • +ADXL335: FAQ
  • +ADXL337: FAQ
  • +ADXL345: FAQ
  • +AD22290: FAQ
  • +ADIS16003: FAQ
  • +ADIS16133: FAQ
  • +ADIS16135: FAQ
  • +ADIS16265: FAQ
  • +ADIS16305: FAQ
  • +ADXL326: FAQ
  • +ADXL350: FAQ
  • +ADXL362: FAQ
  • +ADXL375: FAQ
  • +ADXL377: FAQ
  • +ADXL78: FAQ
  • +ADXRS150: FAQ
  • +ADXRS290: FAQ
  • +ADXRS300: FAQ
  • +ADXRS401: FAQ
  • +ADXRS453: FAQ
  • +ADXRS610: FAQ
  • +ADxRS614: FAQ
  • +ADXRS623: FAQ
  • +ADXRS646: FAQ
  • +ADXRS652: FAQ
  • +ADXRS800: FAQ
  • +ADIS16136: FAQ
  • +ADIS16137: FAQ
  • +ADIS16266: FAQ
  • +ADIS16334: FAQ
  • +ADIS16362 Evaluation Tool: FAQ
  • +ADIS16364 Evaluation Tool: FAQ
  • +ADIS16367: FAQ
  • +ADIS163xx: FAQ
  • +ADIS16489: FAQ
  • +ADIS1648x: FAQ
  • +ADXL346: FAQ
  • +ADXL363: FAQ
  • +EVAL-ADIS: FAQ
  • +EVAL-ADIS2: FAQ
  • +Filtering Functions: FAQ
  • +General: FAQ
  • +Gyroscope: FAQ
  • +Hard & Soft Iron Correction: FAQ
  • +ISEB USB: FAQ
  • +IMU: FAQ
  • +MEMS: FAQ
  • +Slip Ring Interface: FAQ
  • +SPI Troubleshooting: FAQ
  • +TEMP_OUT Variation: FAQ
  • +Test Procedures: FAQ

FAQ: ADIS16228/PCB-ADISUSB Tutorial

Q:

How can I use the ADIS16228 evaluation tools to determine if this product meets my performance needs? 

-----------------------------------------------------------------------------------------------------------------------------------

A:

This post illustrates an experimental approach of observing the vibration signature associated with a example system, using the ADIS16228 and its evaluation tools. In this example, we decided to find out if we can use the ADIS16228 to determine the operational state of a compressor, which produces cold air in a temperature control chamber. For this compressor, there are three different states, which appear to have different vibration profiles: OFF, IDLE and ON. The combination of the ADIS16228/PCBZ, ADISUSB, a laptop and the ADIS16228 evaluation software provided a convenient platform for analyzing the vibration on the compressor's enclosure. Since we didn't want to drill holes in the enclosure (at least to start with), we attached the ADIS16228/PCBZ to the top side of the enclosure (in the middle), using double-sided tape.  In order to minimize the mass of the sensor, we used a 6" ribbon cable to connect the ADIS16228/PCBZ (J1) to the ADISUSB (J1), as shown below. For complete setup guidelines, please see the ADIS16228-ADISUSB User Guide Wiki. 

Once we secured the ADIS16228/PCBZon the surface of the enclosure, we plugged the ADISUSB in to the PC-USB port and opened the ADIS16228 Evaluation Software package. Under Main Control, we established (or verified) the following settings:

  • Click on Interface, then on USB, to make sure that the board was connected.
  • Under Main Control, select Manual for the Rec Mode
  • Under Main Control, select Hanning for the Window
  • Under Main Control, select None for Storage Options.
  • Check the box for Auto Plot
  • Under Sample Rate, make sure that the check box next to SR0 is selected and that the check boxes next to SR1, SR2, and SR3 are not selected.
  • Keep FFT AVGs equal to 1 and the Range equal to 0 to 20g.
  • Click on Null and wait ~1 second for it to complete
  • Click on Start, which will trigger data collection, processing and a plot.

The following plot showed us that there appears to be vibration, but at levels that are much lower than the 20g range.

After reviewing this plot, we clicked on the Scale(g)button to scroll down to a range, which better represented the FFT data.

After observing that the peak vibration energy was at lower frequencies, we changed to the the Sample Rate setting of SR1 and selected a Range of 0 to 5g for this Sample Rate. From the following plot, we can observe the impact of finer frequency resolution.

We also experimented with using a Sample Rate setting of SR2, a Range of 0 to 5g and 8 FFT Averages, in order to reduce some of the variation in the vibration signature. Again, after all settings were complete, we hit Startto trigger the capture/FFT analysis process. In the plot, we observed a large peak at bin 193, which was ~0.1288g (see marker).

Using the same settings, we put the compressor into IDLE mode and ran another FFT (observed a large change in the peak energy. As we can see, the energy at bin 193 was greatly reduced. From this information, we have a clear difference in FFT signature, between the ON and IDLE states.

In order to find a signature difference between the IDLE and OFF modes, we used the Scale(g) button to scroll down to a lower range option. In doing this, we found "peaking" at bin 80, which was ~0.0277g.

When the compressor was in an OFF state, we hit Start again and found that the energy at bin 80 reduced by a large amount.

From this simple experiment, we can conclude the following:

  • While we expect that most applications will require a more thorough investigation of potential behaviors and performacne threats, the ADIS16228's noise, bandwidth and range appear to be sufficient for the stated goal of discerning a vibration difference betwween OFF, IDLE and ON states. 

In concluding this post, we also want to note that using double-sided tape was helpful for this quick demo, but would expect that a complete investigation would want to consider a more rigid attachment approach. The next step in this process will be to determine the appropriate spectral alarm settings for detecting these conditions.  More on that in our next post!

  • vibration_analysis
  • adis16228_evaluation
  • evaluation_tool_tutorial
  • adis16227/pcbz
  • adis16228
  • fft
  • adis16228/pcb
  • productpage
  • adis16227
  • Share
  • History
  • More
  • Cancel
Related
Recommended
Social
Quick Links
  • About ADI
  • ADI Signals+
  • Analog Dialogue
  • Careers
  • Contact us
  • Investor Relations
  • News Room
  • Quality & Reliability
  • Sales & Distribution
  • Incubators
Languages
  • English
  • 简体中文
  • 日本語
Newsletter

Interested in the latest news and articles about ADI products, design tools, training and events? Subscribe today!

Sign Up
Analog Logo
©1995 - 2023 Analog Devices, Inc. All Rights Reserved
沪ICP备09046653号-1
  • Sitemap
  • Legal
  • Privacy & Security
  • Privacy Settings
EngineerZone Uses cookies to ensure you get the best experience in our community. For more information on cookies, please read our Privacy & Security Statement.