MAX17244
Production
The MAX17244 high-efficiency, synchronous step-down DC-DC converter with integrated MOSFETs operates over a 3.5V to 36V input voltage range with 42V input...
Datasheet
MAX17244 on Analog.com
MAX17504
Production
The MAX17504/MAX17504S high-efficiency, high-voltage, synchronously rectified step-down converter with dual integrated MOSFETs operates over a 4.5V to...
Datasheet
MAX17504 on Analog.com
MAX14853
Recommended for New Designs
The MAX14853/MAX14855 isolated RS-485/RS-422
transceivers provide 2750VRMS (60s) of galvanic isolation
between the cable-side (RS-485/RS-422 driver/
receiver...
Datasheet
MAX14853 on Analog.com
MAX30101
Production
The MAX30101 is an integrated pulse oximetry and
heart-rate monitor module. It includes internal LEDs,
photodetectors, optical elements, and low-noise...
Datasheet
MAX30101 on Analog.com
MAX8892
Production
The MAX8891/MAX8892 low-dropout (LDO) linear regulators are designed to deliver up to 150mA continuous output current. These regulators achieve a low 120mV...
Datasheet
MAX8892 on Analog.com
MAX1555
Production
The MAX1551 and MAX1555 charge a single-cell lithium-ion (Li+) battery from both USB and AC adapter sources. They operate with no external FETs or diodes...
Datasheet
MAX1555 on Analog.com
MAX40200
Production
The MAX40200 is an ideal diode current-switch that drops so little voltage that it approaches an order of magnitude better than Schottky diodes.
When...
Datasheet
MAX40200 on Analog.com
MAX6864
Production
The MAX6854/MAX6855/MAX6856/MAX6858/MAX6860–MAX6869 ultra-low-current (170nA, typ) microprocessor (µP) supervisory circuits combine voltage monitoring...
Datasheet
MAX6864 on Analog.com
MAX17220
Production
The MAX17220–MAX17225 is a family of ultra-low quiescent current boost (step-up) DC-DC converters with a 225mA/0.5A/1A peak inductor current limit and...
Datasheet
MAX17220 on Analog.com
MAX16990
Production
The MAX16990/MAX16992 are high-performance, current-mode PWM controllers with 4µA (typ) shutdown current for wide input voltage range boost/SEPIC converters...
Datasheet
MAX16990 on Analog.com
You rely on datasheets for a good sense of how the IC will perform, but when it’s time for more of a “how to” lesson, that’s when reference designs come in handy. Maxim’s Reference Design Center features design implementations spanning single parts to subsystems and full system designs. Each of these designs was built and tested by our engineers.
Here’s a look at some of the newest additions to the Reference Design Center:
MAXREFDES1199: Build a Low-Cost Buck DC-DC Converter
This two-layer board demonstrates how to build a low-cost buck DC-DC converter using the MAX17244 high-efficiency, synchronous step-down converter for 5V DC output applications from a 12V to 32V input. The MAX17244 has integrated MOSFETS and operates over a 3.5V to 36V input voltage range with 42V input transient protection. The device uses a current-mode control architecture and can operate in the pulse-width modulation (PWM) or pulse-frequency modulation (PFM) control schemes. The reference design reduces costs with its minimized component count.
MAXREFDES1199 demonstrates how to build a low-cost buck DC-DC converter.
MAXREFDES1049: DC-DC Buck Power Supply
With this reference design, you can learn how the MAX17504 high-efficiency, high-voltage, synchronously rectified step-down converter can be used to generate 5V from an input voltage of 7.5V to 60V. The design is also intended for equipment that needs to pass electromagnetic interference (EMI) compliance testing, so you’ll gain an understanding of how to achieve high EMI performance using a proper filter with good PCB layout and shielding techniques. (This reference design has passed the conducted emission (CE) test of CISPR 22 class B.)
MAXREFDES1049 is a DC-DC buck power supply designed for equipment that needs to pass EMI compliance testing.
MAXREFDES1160: Build an Isolated RS-485 Module
This reference design provides a 5V supplied, 2.75kVRMS, full-duplex, and 500kbps isolated RS-485 module using the MAX14853 isolated RS-485/RS-422 transceiver. You can use this design to learn how to build an isolated RS-485 module with a low-cost transformer to provide isolated power. The design’s power supply comes from a single 5V source.
MAXREFDES1160 demonstrates how to build an isolated RS-485 module.
MAXREFDES1044: Heart-Rate Monitor
This reference design demonstrates how to implement a small, low-cost, low-power, high-accuracy heart-rate monitor. The design features the MAX30101 integrated pulse oximetry and heart-rate monitor module, which includes internal LEDs, photodetectors, optical elements, and low-noise electronics with ambient light rejection. The design also includes two MAX8892 high-PSRR, low-dropout, 150mA linear regulators, a MAX1555 single-cell lithium-ion battery charger, two MAX40200 ideal diode current switches, and a MAX6864 nanoPower µP supervisory circuit. Heart rate can be monitored with red, infrared, or green LEDs.
MAXREFDES1044 demonstrates the implementation of a small, low-power, highly accurate heart-rate monitor using the MAX30101 integrated pulse oximetry and heart-rate monitor module and other components.
MAXREFDES1215: Supercapacitor-Based Energy Harvester
This reference design demonstrates a supercapacitor-based energy harvester. The first stage of the circuit charges a supercapacitor, while the second stage regulates the voltage from the supercapacitor to supply various sensors with a steady output voltage. The MAX17220 ultra-low quiescent current boost DC-DC converter regulates the output voltage from the supercapacitor. Since supercapacitors are becoming more common in applications like electric vehicles, industrial machinery, and utility grids, this reference design provides a good head start.
MAXREFDES1215 demonstrates a supercapacitor-based energy harvester using the MAX17220 boost DC-DC converter.
MAXREFDES1204: Single-Output SEPIC Converter
This reference design, developed with the MAX16990 current-mode controller, demonstrates a single-output SEPIC converter. Targeted for automotive applications, this design is rated to operate over a wide input voltage range from 6V to 18V, and can deliver an output power of 24W at 12V.
MAXREFDES1204 demonstrates very high efficiency (> 90% for load > 25%), very low line and load regulation (< 0.02%), and continuous conduction mode operation.
Visit our Reference Design Center to search for solutions to support your next project. Design resources including schematics, bill of materials, PCB layouts, and test results are also available with your MyMaxim account.