Locale Icon
English
  • Forums

    Popular Forums

    • LTspice
    • RF and Microwave
    • Video
    • Power Management
    • Precision ADCs
    • FPGA Reference Designs
    • Linux Software Drivers

    Product Forums

    • Amplifiers
    • Microcontrollers
    • Clock and Timing
    • Data Converters
    • Direct Digital Synthesis (DDS)
    • Energy Monitoring and Metering
    • Interface and Isolation
    • MEMS Inertial Sensors
    • Power Management
    • Processors and DSP
    • Switches/Multiplexers
    • Temperature Sensors
    • Voltage References
    View All

    Application Forums

    • A2B
    • Audio
    • Automated Test Equipment (ATE)
    • Condition-Based Monitoring
    • Depth, Perception & Ranging Technologies
    • Embedded Vision Sensing Library
    • Motor Control Hardware Platforms
    • Precision Technology Signal Chains Library
    • Video
    • Wireless Sensor Networks Reference Library

    Design Center Forums

    • ACE Evaluation Software
    • ADEF System Platforms
    • Design Tools and Calculators
    • FPGA Reference Designs
    • Linux Software Drivers
    • Microcontroller no-OS Drivers
    • Reference Designs
    • Signal Chain Power (SCP)
    • Software Interface Tools
    • System Demonstration Platform (SDP) Support
  • Learn

    Highlighted Webinar

    Simplifying Connectivity - Remote Controlled (RC) Nodes in a Software Defined Vehicle (SDV)

    This webinar will introduce remote-controlled edge nodes and how they promise to simplify the automotive network architecture and expedite the integration...

    Places

    • ADI Education Home
    • ADI Webinars
    • GMSL U
    • StudentZone (Analog Dialogue)
    • Video Annex
    • Virtual Classroom

    Libraries

    • 3D ToF Depth Sensing Library
    • Continuous-Wave CMOS Time of Flight (TOF) Library
    • Embedded Vision Sensing Library
    • Gigabit Multimedia Serial Link (GMSL) Library
    • Optical Sensing Library
    • Precision Technology Signal Chains Library
    • Software Modules and SDKs Library
    • Supervisory Circuits Library
    • Wireless Sensor Networks Library

    Latest Webinars

    • Simplifying Connectivity - Remote Controlled (RC) Nodes in a Software Defined Vehicle (SDV)
    • Upcoming Webinar: Simplify High-Accuracy Instrumentation Design with Latest Precision Data Converters
    • Design High Performance Power Systems with Ultralow Noise Technology
    • µModule Solution for Intelligent Motion Control
    • Accelerating Embedded System Development with CodeFusion Studio™︎
    View All Webinars
  • Community Hub

    Challenge Yourself!

      KCC's Quizzes AQQ286 about Right Labels on the Right Boxes containing colored balls

      1. Quote of the week: "Knowledge is knowing a tomato is a fruit. Wisdom is not putting it in a fruit salad" - unknown Sources: commons.wikimedia...

    View All

    What's Brewing

      Quiz! Why a Hybrid Approach Works Blog and Test Your Knowledge

      Quiz! Understand ISO 26262 Compliance Test your knowledge with our quick quiz , based on the blog " Safety in Layers: Why a Hybrid Approach Works ...

    View All

    Places

    • Community Help
    • Logic Lounge
    • Super User Program

    Resources

    • EZ Code of Conduct
    • EZ How To Help Articles
    • Getting Started Guide
    • ADI: Words Matter
    • Community Help Videos
    View All
  • Blogs

    Highlighted Blogs

    IO-Link: Power Dissipation in Practice

    The Limitation of Heat Dissipation IO-Link is used across many branches of factory automation, and in these applications, areas of the factory floor...

     

    GMSL Debugging: Getting a Lock

    Imagine a scenario where you have a brand-new board design or are excited to try out some evaluation kits only to find out that the two devices can’t talk...

    Latest Blogs

    • Exploring DCM and CCM in SMPS: Part 1 of 6
    • Let’s Take a Field-Bus Trip
    • Countable vs Non-countable Faults
    • Power Your Signal: DAS Networks Unleashed: Part 2 of 4
    • Combining Functional Safety and Availability Using Redundancy
    Read All Blogs

    ADI Blogs

    • EZ Spotlight
    • The Engineering Mind
  • ContentZone

    Visit ContentZone

    ContentZone

    Technical articles. Blogs. Videos. Your ADI content, all in one place.

    View ContentZone

    Featured Content

    Featured Content Title

    Blurb About Content

    View Content By Industry

    • Aerospace and Defense Systems
    • Automotive Solutions
    • Consumer Technology Solutions
    • Data Center Solutions
    • Energy Solutions
    • Healthcare Solutions
    • Industrial Automation Technology Solutions
    • Instrumentation and Measurement Solutions
    • Intelligent Building Solutions
    • Internet of Things (IoT)
    • Wireless Communication Solutions

    View Content By Technology

    • A2B Audio Bus
    • ADI OtoSense Predictive Maintenance Solutions
    • Dynamic Speaker Management
    • Gallium Nitride (GaN) Technology
    • Gigabit Multimedia Serial Link (GMSL)
    • Industrial Vision
    • Power Solutions
    • Precision Technology
    • RF
    • Security Solutions
    • Sensor Interfaces
    • SmartMesh
  • Partners

    Partner Forums

    • Boston Engineering
    • PalmSens
    • Richardson RFPD
    • Tri-Star Design, Inc.

    Partner Libraries

    • Calian, Advanced Technologies Library
    • Clockworks Signal Processing Library
    • Colorado Engineering Inc. (DBA CAES AT&E) Library
    • Epiq Solutions Library
    • Fidus Library
    • VadaTech Library
    • Vanteon Library
    • X-Microwave Library
EngineerZone
EngineerZone
SigmaDSP Processors & SigmaStudio Dev. Tool
  • Log In
  • User
  • Site
  • Search
OR
Ask a Question
SigmaDSP Processors & SigmaStudio Dev. Tool
  • Processors and DSP
SigmaDSP Processors & SigmaStudio Dev. Tool
Documents ADAU1701: ADC resistor values for higher sample rates
  • Forums
  • File Uploads
  • Members
  • Tags
  • More
  • Cancel
  • Documents
  • +AD193x: FAQ
  • +ADAU1401AEBZ: FAQ
  • +ADAU144x: FAQ
  • +ADAU1452: FAQ
  • +ADAU145x: FAQ
  • -ADAU1701: FAQ
    • ADAU1701 Input and Output Signal Routing
    • ADAU1701: ADC resistor values for higher sample rates
    • Implementing Safeload Writes on the ADAU1701
    • My 2IN4OUT Proto with SPDIF based on ADAU1701
    • Setting the PLL mode for the ADAU1701 at different sample rates
    • Thoughts on using index selectable filters...
    • Using hardware data capture (trap) registers with the DSP Readback cell (AD1940, ADAU1701)
  • +ADAU1701MINIZ- FAQ
  • +ADAU1761: FAQ
  • +ADAU1772: FAQ
  • +ADI: FAQ
  • +AN-951: FAQ
  • +bitwise logic: FAQ
  • +Compressor Table Format: FAQ
  • +Creating a simple balance crossfade control: FAQ
  • +Creating constant-dB envelope decay using an existing linear decay algorithm: FAQ
  • +Crossover with more than 3 bands: FAQ
  • +E2PROM: FAQ
  • +EEPROM: FAQ
  • +EVAL DAU144XEBZ: FAQ
  • +EVAL-ADAU1781Z: FAQ
  • +Excluding Cells from the Exported System Files: FAQ
  • +GPIO button: FAQ
  • +GPIOs or Aux ADCs: FAQ
  • +How do I execute a software safeload write?: FAQ
  • +IIR coefficient filter: FAQ
  • +IIR filter: FAQ
  • +Peak Full Range Compressor: FAQ
  • +Preserving "Ear-candy": FAQ
  • +Push Button Volume: FAQ
  • +self-boot EEPROM image: FAQ
  • +Sigma300 Family Products: FAQ
  • +SigmaDSP: FAQ
  • +SigmaStudio: FAQ
  • +single precision VS double precision: FAQ
  • +Stimulus-Probe Capability and Limitations: FAQ
  • +Stopwatch to Count Successive Samples: FAQ
  • +Toolbox into the schematic tab: FAQ
  • +USB communications between the PC and SigmaDSP: FAQ
  • +Using Hierarchy Boards to create re-usable code: FAQ

ADAU1701: ADC resistor values for higher sample rates

As explained in the datasheet, the series resistors on the ADC inputs only need to be changed "is if a sampling rate other than 48 kHz is used." That being said, the definition of "sample rate" used here is somewhat ambiguous.

In some types of DSP (or codecs), in order to increase or decrease the sample rate, you simply scale the clock signals accordingly. For example, if you're feeding a 12.288 MHz master clock into the system for a 48 kHz sample rate, then you can simply scale that down by 8.125% to 11.2896 MHz for a 44.1 kHz sample rate, or double it to 24.576 MHz for a 96 kHz sample rate, etc... In many kinds of ICs, you are free to do this (as long as you stay within the boundaries of allowable clock frequencies) and all of the internally generated clocks will simply scale accordingly.

The ADAU1701 is a bit different. The PLL takes in a master clock and divides it down before multiplying it up to a much higher frequency. For a 48 kHz sample rate, the DSP core clock is 1024 * 48000 = 49.152 MHz. Now, when you want to use a 96 kHz sample rate, logically you might assume that the core clock doubles to 98.304 MHz. However, this is not the case for the ADAU1701. Its DSP core clock can only run up to somewhere in the 50 MHz range before things start to break down and function incorrectly. Scaling down for a 44.1 kHz sample rate is not a problem (the DSP core clock can easily run at 44.1584 MHz.

So, an alternate method is used for higher sample rates. For 96 kHz (which we refer to as "double rate" or "dual rate" in some other SigmaDSP datasheets), the DSP core simply grabs a sample twice as often as it did at 48 kHz. This also makes the interpolation and decimation filters for the converters run twice as fast, and has the side effect that the DSP core can only execute half as many instructions per sample as it could at the "normal rate" of 48 kHz.

Quad rate is possible as well, using the same method. The DSP core quadruples the rate at which it grabs samples from the converters and serial ports, and the interpolation and decimation filters do the same. Instead of scaling the frequency up or down of all of the clocks in the system, you're simply doubling or quadrupling the clock frequencies for certain subsystems.

That being said, the explanation regarding the ADC resistors refers more to the case I originally described above, where you might be running your system at 44.1 kHz or maybe at some strange non-standard rate like 49 kHz or 42 kHz. In that case, you're literally scaling the frequency of the MCLK, so the ADC resistor values need to scale as well.

Conversely, if you are running at 96 kHz, the MCLK frequency itself remains unchanged, and you're simply doubling the rate of the DSP core and converter filters. In that case, you only need to change a register setting, and no hardware changes are required.

The ADC is oversampling, clocked at a constant factor of the core clock regardless of single, dual, or quad rate modes, and the decimation is just occurring with 1/2 or 1/4 as many samples to compensate. It is the actual sampling rate of the converters which matters, and that is not affected by dual or quad rate modes.

In summary, the ADC_RES values for 48 kHz, 96 kHz and 192 kHz should be the same, because the core clock frequencies are the same in both cases.

[Edited 2012.03.01 to include nickw's corrections and comments]

This FAQ was generated from the following discussion: ADAU1701: ADC resistor values for higher sample rates

Tags: adc noise adau1701 sample_rate resistor
  • Share
  • History
  • More
  • Cancel
 
Related Content
  • RE: ADAU1701: ADC resistor values for higher sample rates
    ADIApproved
    Hi Steve, and welcome to the forum. Fortunately, I think I know the exact reason why this is happening! Unfortunately, I think it points out a lack of clarity in our datasheet. As explained in the...
  • RE: ADAU1701 Clocking and PLL
    ADIApproved
    This thread might help to clear up some confusion. Just to be clear, the core is always running at 49.152 MHz, but in the case of dual-rate or quad-rate processing, you're simply ordering the DSP to...
  • How do I change the sample rate of my SigmaStudio system?
    stephenv
    In order to change the sample rate of a system, follow these steps: Setting Software Sample Rate Locate the sample rate section of the toolbar. Click the drop-down box, and select a new sample...
 
Related Content
  • RE: ADAU1701: ADC resistor values for higher sample rates
    ADIApproved
    Hi Steve, and welcome to the forum. Fortunately, I think I know the exact reason why this is happening! Unfortunately, I think it points out a lack of clarity in our datasheet. As explained in the...
  • RE: ADAU1701 Clocking and PLL
    ADIApproved
    This thread might help to clear up some confusion. Just to be clear, the core is always running at 49.152 MHz, but in the case of dual-rate or quad-rate processing, you're simply ordering the DSP to...
  • How do I change the sample rate of my SigmaStudio system?
    stephenv
    In order to change the sample rate of a system, follow these steps: Setting Software Sample Rate Locate the sample rate section of the toolbar. Click the drop-down box, and select a new sample...
analog-devices logo

About Analog Devices

  • Who We Are
  • Careers
  • Newsroom
  • What We Do (Signals+)
  • Investor RelationsExternalLink
  • Quality & Reliability
  • Sales and Distribution
  • What's New on Analog.com
  • Contact Us

Find Help

  • Support
  • Resources
  • WikiExternalLink
  • Analog Dialogue

Get the Latest News

Stay up to date with our latest news and articles about Analog Devices' products, design tools, trainings, and events.

Sign Up Now
  • Instagram page
  • Twitter page
  • Linkedin page
  • Youtube page
  • Facebook
  • Legal and Risk
  • Accessibility
  • Privacy Policy
  • Privacy Settings
  • Cookie Settings
沪ICP备09046653号-1

©2025 Analog Devices, Inc. All Rights Reserved

analog-devices

About Analog Devices

Down Up
  • Who We Are
  • Careers
  • Newsroom
  • What We Do (Signals+)
  • Investor RelationsExternalLink
  • Quality & Reliability
  • Sales and Distribution
  • What's New on Analog.com
  • Contact Us

Find Help

Down Up
  • Support
  • Resources
  • WikiExternalLink
  • Analog Dialogue

Get the Latest News

Stay up to date with our latest news and articles about Analog Devices' products, design tools, trainings, and events.

Instagram page Facebook Twitter page Linkedin page Youtube page
  • Legal and Risk
  • Accessibility
  • Privacy Policy
  • Privacy Settings
  • Cookie Settings
沪ICP备09046653号-1

©2025 Analog Devices, Inc. All Rights Reserved