Locale Icon
English
EngineerZone
EngineerZone
放大器专区
  • Log In
  • User
  • Site
  • Search
OR
Ask a Question
  • 产品和应用

    产品和应用

    • 放大器专区
    • 精密转换器专区
    • 音频专区
    • ADE电能计量专区
    • MEMS专区
    • 生物/电化学/磁场/温度传感器专区
    • 接口和隔离专区

     

    • Power 中文专区
    • ADUC微处理器专区
    • 时钟与定时
    • 开关和多路复用器专区
    • 温度传感器
    • 基准电压源专区

     

    • 嵌入式安全与1-Wire
    • Trinamic 运动控制和电机驱动
    • 能源存储系统(ESS)和电池管理系统(BMS)
    • 边缘人工智能SOC
    • 通用SOC/MCU
    • GMSL

    查看全部
  • 教育中心

    教育中心

    • 资源库
    • 技术支持参考库
    • 在线研讨会
  • 活动中心

    活动中心

    • 论坛社群活动
    • 论坛激励活动
放大器专区
  • 中文社区
放大器专区
文档 ADI院士访谈:如何用先进模拟技术打造完美音效
  • 问答
  • 讨论
  • 文档
  • 成员
  • 标签
  • More
  • Cancel
  • 文档
  • 2013电赛射频宽带放大器剖析(ZT)
  • AD1836A是否可以在32KHz或44.1KHz采样速率下工作?
  • AD5420_引脚5连接
  • ad5421_两个器件共享一个SPI
  • AD5446_SFDR
  • AD652_SVFC输出频率
  • AD698_多芯片同步
  • AD711_PDIP封装引脚8连接
  • AD7190_2倍增益和4倍增益设置
  • AD7190_AINCOM范围
  • ad7190_内部时钟上电时间
  • AD7192输入范围
  • AD7323的输出码
  • AD736ARZ结温
  • AD7606的关断和待机模式
  • AD7606的输入悬空
  • AD7656与AD7656-1的区别
  • AD7656的电源和去耦电容要求
  • AD7656的范围问题
  • AD7690的SNR
  • AD7712_电源
  • AD7730_校准系数
  • AD7745_无输入保护电路
  • AD7746_输入阻抗
  • AD7764的差分放大器
  • AD7790_SPI尖峰
  • AD7793_校准公式
  • AD7980菊花链模式
  • AD8002_容性负载
  • AD8045_焊盘连接
  • AD815大电流差动驱动器的特点与应用
  • AD828AR的对应无铅器件的型号是什么?
  • AD8302的小信号包络带宽
  • AD8332_过载
  • ad8333_同步问题
  • AD8336_AN934带宽变化
  • AD8336_EVB接头
  • AD8336_采用5V单电源供电
  • AD8339_LO抑制
  • AD8340相位控制
  • AD8343 S参数
  • AD8370 S参数
  • AD8400_8引脚电压不正确
  • AD8422一款精密、低功耗、低噪声轨到轨仪表放大器
  • AD8553_双电源应用
  • AD8597_spice模型
  • AD8602_输出级
  • AD8677_Spice模型
  • AD9523-1_仅使用PLL2
  • AD9551_基准输入规格
  • AD9838_相位噪声
  • AD9880AD9398_HDCP加密软件
  • AD9880_SA0引脚
  • AD9882_HDCP检测
  • AD9910_相位噪声2
  • AD9910_相位截断位
  • AD9981与AD80105Z的区别
  • ADIS16220:可编程数字振动传感器(中文版PDF)
  • ADI工程师视频实例讲解:如何计算仪表放大器噪声
  • ADI年度贺岁片—— AD822和AD8532组成的经典耳机放大器驱动
  • ADI年度贺岁片——ADA4665-2放大器的应用
  • ADI电路笔记CN0066的翻译 AD7793中文资料
  • ADI院士访谈:如何用先进模拟技术打造完美音效
  • ADL5375的输出功率
  • ADMP401的输出范围
  • ADV7171评估板
  • ADV7180_新特性
  • ADV734X电源时序问题
  • AMP03:  高速差分放大器
  • CMOS运算放大器原理设计应用
  • +MAX1452AAE+: FAQ
  • +MAX1452ATG+: FAQ
  • +MAX1452EVKIT-NS: FAQ
  • +MAX1454: FAQ
  • +MAX15500: FAQ
  • +MAX19005CCS+: FAQ
  • +MAX2066ETL+: FAQ
  • +MAX2616: FAQ
  • +MAX2640AUT+: FAQ
  • +MAX2679ENS+: FAQ
  • +MAX2692EVKIT#: FAQ
  • +MAX3658AETA+: FAQ
  • +MAX3806: FAQ
  • +MAX38643AELT+T: FAQ
  • +MAX40007: FAQ
  • +MAX40201FAUA+: FAQ
  • +MAX4063: FAQ
  • +MAX4063ETE+: FAQ
  • +MAX40658: FAQ
  • +MAX4070ATA+: FAQ
  • +MAX4080FASA+: FAQ
  • +MAX4080SASA+: FAQ
  • +MAX4081TASA+T: FAQ
  • +MAX4194: FAQ
  • +MAX4206: FAQ
  • +MAX4223ESA+: FAQ
  • +MAX4376: FAQ
  • +MAX44009EDT+T: FAQ
  • +MAX44251: FAQ
  • MAX44284: FAQ
  • +MAX44284EAUT+: FAQ
  • +MAX4940: FAQ
  • +MAX951: FAQ
  • MAX9611: FAQ
  • +MAX9611EUB+: FAQ
  • +MAX9634TERS+T: FAQ
  • +MAX9918ASA/V+: FAQ
  • +MAX9919NASA+: FAQ
  • MAX9920: FAQ
  • +MAX9920ASA/V+T: FAQ
  • +MAX9922: FAQ
  • +MAX9923TEUB+T: FAQ
  • +MAX9979CXG+C35: FAQ
  • MAX9979KCTK+: FAQ
  • +MAX9979KCTK+TD: FAQ
  • OP放大电路设计.pdf
  • RMS to DC转换器AD8436测试报告
  • sigmadeltaADC_SPI时序的最后读取位问题
  • SNR测试
  • [ADI微博问答精选] 请ADI介绍些跨导型运放的学习资料
  • [ADI微博问答精选]请教关于三运放仪用放大器芯片AD8421的问题
  • [征文] 关于仪运放AD620的原理及计算(原创)
  • [征文原创]AD9739使用的经验分享1
  • 【CN0151】利用DAC、运算放大器和MOSFET构建可编程电流源
  • 【模拟电子】从放大器说起(一):放大器的基本形态(ZT)
  • 【模拟电子】从放大器说起(二):电子管(ZT)
  • 【模拟电子】从放大器说起(序章)(ZT)
  • 专家经验分享:宽动态范围的高端电流检测的三种解决方案
  • 以8KHz和16KHz采样速率工作
  • 仪表放大器应用工程师指南.pdf
  • 关于AD7655的REF
  • 关于旁路电容的深度对话
  • 关注可穿戴技术的看过来——可穿戴设备电源管理方案
  • 分享---最爱ADI放大器之AD524
  • 在使用AD8031作为比例放大电路时发现输入为零输出会偏移300mv至700mv怎么办?
  • 基于AD9854可调频率、占空比的信号源(自己设计)附电路原理图
  • 差动放大器和电流检测放大器
  • 常见设计问答之——仪表放大器
  • 应用DAC静音与DAC输出静音的区别
  • 应用工程师问答:电流反馈型放大器
  • 当输入信号低于70MHz时,AD6600能否正常工作?
  • 微信焦点(第1期):匆匆这一年——回顾ADI精彩2014
  • 微信焦点(第7期):从“中国好游客”说开去,心肺复苏及除颤仪知识大普及
  • 心电图(ECG)设计的六大挑战及应对策略(三)——怎样才能满足模拟前端共模和差模的动态范围
  • 心电图(ECG)设计的六大挑战及应对策略(二)——如何进行共模抑制测量
  • 技术分享——高温与电路设计
  • 技术支持论坛三重奖——注册、发帖、跟帖, 步步好礼
  • 技术文章分享:成功实现超低光信号转换的七个步骤
  • 提取微弱小信号的锁相放大器 初步测试结果
  • 放大器的输入范围
  • 数字电位计_带宽
  • 最爱ADI放大器---AD603A
  • 最爱ADI放大器--AD8551
  • 最爱ADI放大器-ADA4692-2
  • 最爱ADI放大器之- AD712
  • 最爱ADI放大器之-AD8045
  • 最爱ADI放大器之AD-U1
  • 最爱ADI放大器之AD215
  • 最爱ADI放大器之AD623
  • 最爱ADI运放之AD8571
  • 最爱放大器之-AD8138
  • 最爱放大器之ADL5562
  • 申请到的AD样片
  • 申请到的AD样片2
  • 电子工程师最在意的那些事
  • 简明集成运算放大器应用手册
  • 观点大碰撞——放大电路,那些你我关注的设计要点
  • 视频教程:运算放大器和专用放大器的应用和常识
  • 说出您心中的ADI年度“贺岁片”,发帖、跟帖送大奖,赶快行动,马上有好礼!
  • 谈谈运放与音乐韵味AD827、AD712、AD797三款运放的比较
  • 资料共享:《怎样使用运算放大器》
  • 资料分享:仪表放大器用户指南
  • 资源转发---二阶系统的运算放大器总输出噪声计算
  • 资源转发---仪表放大器设计指南
  • 资源转发---仪表放大器输入RFI保护
  • 资源转发---双通道通用精密运算放大器评估板
  • 资源转发---将运算放大器用作比较器
  • 资源转发---应用放大器进行信号调理和精密系统驱动设计
  • 资源转发---理想的电压反馈型(VFB)运算放大器
  • 资源转发---电压反馈型运算放大器的增益和带宽
  • 资源转发---电流反馈运算放大器噪声考虑因素
  • 运算放大器使用指南(PPT讲义)
  • 运算放大器电源抑制比(PSRR)与电源电压
  • 运算放大器的好坏判别方法 (转)
  • 运算放大器的工作原理(zt)
  • 运算放大器输出相位反转和输入过压保护
  • 选择分立晶体管时无需过于斤斤计较,那么模拟IC呢?
  • 降低仪表放大器电路中的射频干扰整流误差
  • 非常见问题解答:放大器,还是衰减器,或两者皆可?
  • 高性能、低功耗、轨到轨精密仪表放大器AD8422勇夺“年度最佳产品奖”,您造吗
  • 高性能模拟前端中的运算放大器设计

ADI院士访谈:如何用先进模拟技术打造完美音效

ADI Academician Interview: How to Create Perfect Sound with Advanced Analog Technology by ADI_Amy

This article is the "Electronic Engineering Album" reporter Shao Lefeng interviewed by ADI academician Scott Wurcer (original "using advanced analog technology to create perfect sound effects" http://www.eet-china.com/ART_8800706170_617703_NT_01bbf625.HTM ), the article shared a lot of wonderful The “inside” behind the ideas and product development is forwarded here to share with you.


(Disclosure a "secret", Scott is still a Chinese pass, very passionate about Chinese culture, proficient in Chinese traditional painting, the following bamboo painting is very good? Must be awesome! ^_^)


 

 

Mr. Scott Wurcer is the second ADI company Fellow I interviewed. Easy-going, lack of words, brilliant educational background, and outstanding personal achievements are the first impressions he left for me. From designing AD's first modern instrumentation amplifier, the AD524, to the low-cost general-purpose FET operational amplifier AD712, which was widely used in early CD players, to the industry's benchmark low-noise precision operational amplifier, the AD797, in the audio application. In the process of growing from a newcomer to an academician, ADI 's reputation in the field of audio amplifiers is gradually gaining momentum.

 

"In fact, AD712 and AD797 were not originally designed for audio applications. This seems to be the law of ADI audio amplifier products. Just because we have a strong technical advantage, we can achieve the extreme parameters such as noise and distortion, and then get The audio user's affirmation has been passed down. You know, the user's word of mouth is far more important than the product parameter index, because even the sound processed by the amplifier with high parameter index sometimes sounds unsatisfactory."

 

他还特别提到了两款能够代表当前ADI音频放大器水平的产品:在知名便携Hi-Fi音频播放器中被广泛采用的电压反馈型运算放大器AD8397,以及适合既要求高性能但又对功耗有苛刻要求音频应用的放大器产品ADA4841-2。资料显示,AD8397采用ADI公司的高速超快速互补双极性高压(XFCB-HV)工艺制造,高带宽和快速压摆率特性使得失真和功耗均降至最低,其THD+N(32ohm负载,30mA输出电流)时为-118dB,THD+N(16Ω负载,60mA输出电流)时为-114dB。此外,AD8397共发射极、轨到轨输出级的输出电压能力也优于典型发射极-跟随器输出级,驱动25Ω负载时摆幅可以达到任一供电轨的0.5 V范围以内。

 

如果说低失真、高输出电流和宽输出动态范围这三大特性,使得AD8397特别适合要求高负载上大信号摆幅的应用。那么作为一款单位增益稳定、低噪声、低失真、轨到轨输出放大器,ADA4841-2则非常适合便携式仪器仪表、高通道数、工业测量和医疗应用。ADA4841-2具备最大值为1.5 mA静态电流、2.1 nV/√Hz低宽带电压噪声性能和1.4 pA/√Hz电流噪声,100 kHz时无杂散动态范围(SFDR)为-105dBc。为了在更低频率下保持低噪声环境,10Hz时放大器具有7nV/√Hz和13 pA/√Hz的低1/f噪声。ADA4841-2每供电轨的输出摆幅均在50 mV以下,输入共模电压范围扩展至负电源电压,可以最小峰值驱动高达10pF的容性负载。

 

Scott认为鉴于音频设计效果评估的主观性,必须首先运用多年的设计技术积累结合自主研发的制作工艺做出最好的产品,包括更小的体积、更低的功耗、更接近完美的线性信号放大技术,再考虑针对特定的应用场景做调整和优化。建立在这样的设计哲学基础上,ADI对于发烧友的产品性能主观评价有绝对信心。


ADI公司院士Scott Wurcer

 

与触控技术一样,语音音频(包括语音搜索、语音命令、语音唤醒等)功能,正在人机交互过程中扮演着重要角色。而未来,语音更将成为可穿戴设备的关键接口之一。Scott说此番中国之行的一个重要行程是拜访国内消费电子厂商,了解他们对模拟类音频产品的实际需求。原因则是目前大量移动设备厂商只关注CPU核数、视频和屏幕分辨率,却对音频效果置若罔闻,结果导致要么无法提供身临其境的环绕声效,要么使用了低质量的扬声器和耳机,从而产生狭隘的立体声音场、差强人意的声音质量、不自然的声音色彩和不足的低音。

 

因此,为耳机提供数字化可调节噪音减免、提高扩音器音量和扬声器保护、噪音减免,回声消除,成为确保移动用户获得优质语音效果的主要方法。ADI方面称,目前公司在便携消费类音频领域有两个重点投资方向:一是继续为高性能耳机提供高性能运放,带给消费者更逼真的音频体验;二是鉴于智能手机日趋轻薄,如何用技术手段在保护扬声器的同时解决音腔狭小带来的音效损失。

 

Scott认为这两方面的技术挑战非常大,要确保低噪声、低失真的音源能从高性能耳机中稳定输出,要防止手机射频电路噪声对音频电路带来的干扰,就必须在模拟电路方面采取新的设计技巧,而这在早期运放的数据手册中是没有答案可循的,只有与客户通力合作才能找到最佳解决方案。而另一个挑战,则来自于消费电子厂商当前必须要在PCB空间尺寸、价格、性能之间做出平衡,因为这将涉及到音频芯片的分立与集成。

 

举例而言,常用耳机的阻值通常是16或32Ω,当采用1V电压驱动时,将产生30mA电流。此时,就需要音频放大器驱动电路在输出大电流时能够保证THD+N指标(谐波失真和噪声)低,同时芯片静态功耗低,这就对放大器的设计提出了相当高的要求。放大器产品原理并不复杂,但如果没有多年的设计经验和IP积累,以及出色的架构设计和制造工艺保障,恐怕很难实现手机中的Hi-Fi级音效品质。


RE: ADI院士访谈:如何用先进模拟技术打造完美音效 by ADI_Amy:

文章中相关产品介绍:

AD524:  精密仪表放大器(http://www.analog.com/zh/specialty-amplifiers/instrumentation-amplifiers/ad524/products/product.html)

AD524是一款精密单芯片仪表放大器,针对要求在最差工作条件下提供高精度的数据采集应用而设计。高线性度、高共模抑制、低失调电压漂移与低噪声等特性的出色组合,使该器件适合用于许多数据采集系统中。

 

产品聚焦

  1. AD524具有保证低失调电压、低失调电压漂移和低噪声等特性,适合精密高增益应用。
  2. AD524在功能上是完整的,引脚可编程增益为1、10、100和1000,通过一个电阻可设置任何增益。
  3. 针对极高精度应用,以及为使增益范围调整应用中的失调电压变化最小,该器件提供了输入和输出失调零点校准引脚。
  4. AD524的输入端受到保护,不受上电和断电时的故障影响。
  5. AD524提供出色的动态性能:增益带宽积为25 MHz,全功率响应为75 kHz,0.01%建立时间为15 μs(20 V步进,G = 100)。

AD712:  精密、低成本、高速、BIFET双通道运算放大器 (http://www.analog.com/zh/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ad712/products/product.html)

AD712是一款高速、精密、单芯片运算放大器,具有极高的性价比。它采用先进的激光晶圆调整技术,具有极低的失调电压和失调电压漂移特性。利用这些性能优势,用户可以轻松升级采用旧型号精密BiFET(许多情况下是双极性运算放大器)的现有设计。

 

新的替代产品 ADA4000-2 其噪声、速度和精度均有改进,静态功耗更低,采用窄体8引脚SOIC和MSOP两种封装。

AD797:  超低失真、超低噪声运算放大器(http://www.analog.com/zh/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ad797/products/product.html)

AD797是一款极低噪声、低失真运算放大器,非常适合用作前置放大器。它在音频带宽上具有低噪声(0.9 nV(root)Hz)和低总谐波失真(-120 dB)特性,能够达到麦克风和调音台中对前置放大器的较宽动态范围要求。

新的替代产品

  • AD8597超低失真、超低噪声运算放大器(单通道)
    • ADA4898-1 和 ADA4898-2 具有类似的噪声性能,最大电源电压为36 V,以55 V/μs压摆率通过内部补偿单位增益
  • ADA4627-130 V、19 MHz、低噪声、低偏置电流、JFET运算放大器

AD8397:  轨到轨、高输出电流放大器(http://www.analog.com/zh/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ad8397/products/product.html)

AD8397内置两个电压反馈型运算放大器,能够以出色的线性度驱动高负载。共发射极、轨到轨输出级的输出电压能力优于典型发射极-跟随器输出级,驱动25 Ω负载时摆幅可以达到任一供电轨的0.5 V范围以内。低失真、高输出电流和宽输出动态范围使AD8397特别适合要求高负载上大信号摆幅的应用。

ADA4841-2:  双通道、低功耗、低噪声、低失真、轨到轨输出放大器(http://www.analog.com/zh/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ada4841-2/products/product.html)

ADA4841-2是一款单位增益稳定、低噪声、低失真、轨到轨输出放大器,静态电流最大值为1.5 mA。 该放大器不仅功耗低,还提供2.1 nV/√Hz的低宽带电压噪声性能和1.4 pA/√Hz的电流噪声,100 kHz时具有极佳的-105 dBc无杂散动态范围(SFDR)。 为了在更低频率下保持低噪声环境,10 Hz时放大器具有7 nV/√Hz和13 pA/√Hz的低1/f噪声。

ADA4841-2每供电轨的输出摆幅低至50 mV以下, 输入共模电压范围扩展至负电源电压, 可以最小峰值驱动高达10 pF的容性负载。

The ADA4841-2 provides the performance needed to efficiently support the latest 16-bit to 18-bit ADCs. It is ideal for portable instrumentation, high channel count, industrial measurement, and medical applications, making it ideal for driving the 16768 PulSAR ADC AD7685/AD7686.

The ADA4841-2 package is RoHS compliant. The amplifier is rated for operation over the industrial temperature range of -40°C to +125°C.


RE: ADI Academician Interview: How to Create Perfect Sound with Advanced Analog Technology by ADI_Amy :

Articles written by Scott Wurcer recommend:

Avoid the trap of passive components http://www.analog.com/static/imported-files/en/application_notes/AN-348_en.pdf

If you choose the wrong passive components, even the best op amp or data converter may also perform poorly. This article reminds you of some basic pitfalls to be aware of.

 

Accurately test op amp settling time http://www.analog.com/static/imported-files/en/application_notes/AN-256_en.pdf

AD9929: HD/CLI Timing Relationship in Slave Mode http://www.analog.com/static/imported-files/en/application_notes/AN-842_en.pdf

  • Share
  • History
  • More
  • Cancel
Related
Recommended
analog-devices logo

About Analog Devices

  • Who We Are
  • Careers
  • Newsroom
  • What We Do (Signals+)
  • Investor RelationsExternalLink
  • Quality & Reliability
  • Sales and Distribution
  • What's New on Analog.com
  • Contact Us

Find Help

  • Support
  • Resources
  • WikiExternalLink
  • Analog Dialogue

Get the Latest News

Stay up to date with our latest news and articles about Analog Devices' products, design tools, trainings, and events.

Sign Up Now
  • Instagram page
  • Twitter page
  • Linkedin page
  • Youtube page
  • Facebook
  • Legal and Risk
  • Accessibility
  • Privacy Policy
  • Privacy Settings
  • ADI Community User Forum Terms of Use
  • Cookie Settings
沪ICP备09046653号-1

©2024 Analog Devices, Inc. All Rights Reserved

analog-devices

About Analog Devices

Down Up
  • Who We Are
  • Careers
  • Newsroom
  • What We Do (Signals+)
  • Investor RelationsExternalLink
  • Quality & Reliability
  • Sales and Distribution
  • What's New on Analog.com
  • Contact Us

Find Help

Down Up
  • Support
  • Resources
  • WikiExternalLink
  • Analog Dialogue

Get the Latest News

Stay up to date with our latest news and articles about Analog Devices' products, design tools, trainings, and events.

Instagram page Facebook Twitter page Linkedin page Youtube page
  • Legal and Risk
  • Accessibility
  • Privacy Policy
  • Privacy Settings
  • ADI Community User Forum Terms of Use
  • Cookie Settings
沪ICP备09046653号-1

©2024 Analog Devices, Inc. All Rights Reserved