The software package we currently use is GNURadio. This package communicates with the
PlutoSDR by using the LIBIIO library (over usb). Below you will find a straight-forward block
diagram to transmit and receive a single sine wave with the same device:

PlutoSDR Sink
1O context URI:
Variable Signal Source LO Frequency: 300M
ID: samp_rate Sample Rate: 2.084M Sample rate: 2.084M
Value: 2.084M [Waveform: Cosine I > I RF bandwidth: 20M
Frequency: 10k Buffer size: 32.768k
Amplitude: 500m Cyclic: False
QT GUI Range Offset: 0 Attenuation (dB): 0
ID: gain Filter:
Label: Gain Filter auto: True
Default Value: 5
Start: 0
:::: 5’4 PlutoSDR Source
Device URI:
LO Frequency: 300M
Sample rate: 2.084M
b UL RF bandwidth: 20M QT GUI Sink
ID: carrier Buffer size: 32.768k FFT Size: 1.024k
Label: Carrier Quadrature: True I—.-I Center Frequency (Hz): 0
Default Value: 300M RF DC: True Bandwidth {Hz): 2.084M
Start: 300M BB DC: True Update Rate: 10
Stopf 16 Gain Mede: Manual
Step: 1 Manual Gain (dB): 5
Filter:
Filter auto: True

As you can see, | also implemented a numeral input variable for the local frequency
(ID: carrier). When this block diagram is compiled into the corresponding python code, the
following GUI is created, which allows us to change the local frequency 'on the fly":

Top Block
Gain — 5.0
Carrier 300000000 =
Frequency Display = Waterfall Display | Time Domain Display = Constellation Display
] —Data 0
0+
-20 ;
T
T 40
L 1
3 i
2 0]
=]
o i
[
4
T T T T T i T T : T T T T : T T T
-1.000 -0.500 0.000 0.500 1.000
Frequency (MHz)
Max Hold Average
Min Hold o |3
Display RF Frequencies FFT Size: | 1024 -
Window: |Blackman-harris

In the waterfall display below, we can see the FFT plot over time where the amplitude is
represented by a color. | think this is where the miscommunication happened; Whenever the
local frequency is changed, the device cannot transmit or receive any samples to or from the
device for ~1 second (between ~5.1 and ~5.2 seconds in the graph below). We called this a
'reboot’ in our previous e-mail because the device is unresponsive for a noticable amount of
time, but we probably should have called it an 'unavailability' since the device is not actually
rebooting, but merely changing the local frequency attribute.

Top Block x

Gain em—) 50 |2

Carrier 400000000 =

Frequency Display | Waterfall Display | Time Domain Display = Constellation Display

Intensity Display: | Color halll 0dB
2.00e+01 o

1.50e+01

1.00e+01 o

Time (s)

5.00e+00 —

0.00e+00 —

- - - - r r - r : - r - r - r - r - T
-1.000 -0.500 0.000 0.500 1.000
Frequency (MHz)

| Auto Scale | [& 1 -200dB

|| Display RF Frequencies FFT Size: | 1024 v

Window: | Blackman-harris + |

Our purpose is to have many adalm plutos communicate with each other over a set of carrier
frequencies. For this to happen, each unit needs to claim an available (unused) frequency
and do a frequency sweep to find other devices transmitting on other frequencies. If we
need one second to switch per frequency, the sweeping process will take too long. We need
to get this 'transition' time down to a few milliseconds - preferably even less - otherwise the
device won't be usable for our purpose.

| looked through the code and found the following:

The python function that we get from GNURadio to change the local frequency is this:

def set carrier(self, carrier):
self.carrier = carrier
self.pluto_source 0.set_params(int(self.carrier), self.samp_rate, 20000000, True, True, True, "manual”, self.gain, '', True)
self.pluto_sink 0.set_params(int(self.carrier), self.samp_rate, 20000000, @, '', True)

The 'set_params' method above calls the following C function from the gr-iio
library: https://github.com/analogdevicesinc/gr-
iio/blob/85cf3200691ddf57f84001f0489f0a0ce4c34532/lib/pluto_sink impl.cc#L66

If | follow the chain of all functions that call each other, the C function linked from the gr-iio
repository above links back to this command from the libiio

repository: https://github.com/analogdevicesinc/libiio/blob/560027bfa271c7c994ca5¢c383c9
030f26a5b1d88/examples/ad9371-iiostream.c#L95

https://github.com/analogdevicesinc/gr-iio/blob/85cf3200691ddf57f84001f0489f0a0ce4c34532/lib/pluto_sink_impl.cc#L66
https://github.com/analogdevicesinc/gr-iio/blob/85cf3200691ddf57f84001f0489f0a0ce4c34532/lib/pluto_sink_impl.cc#L66
https://github.com/analogdevicesinc/libiio/blob/560027bfa271c7c994ca5c383c9030f26a5b1d88/examples/ad9371-iiostream.c#L95
https://github.com/analogdevicesinc/libiio/blob/560027bfa271c7c994ca5c383c9030f26a5b1d88/examples/ad9371-iiostream.c#L95

Assuming | observed this chain of functions correctly, does that mean that since GNURadio is
directly writing the lo_fr (local frequency) attribute to the ad9371 chip using the libiio
library, that there is no more optimal or faster way of doing this? Does this mean that we are
stuck with the delay of 1 second to change between frequencies? Is this a limitation by the
method of communicating between the petalinux mcu with the ad9371 chip inside the
adalm pluto or a limitation from communicating with the device externally over usb? Is there
other software we can use (than GNURadio) that allows us to do a frequency sweep at a
higher speed?

